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NATURAL CONVECTION IN A SQUARE CAVITY:
A COMPARISON EXERCISE

G. DE VAHL DAVIS
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AND
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SUMMARY

A number of contributed solutions to the problem of laminar natural convection in a square cavity have
been compared with what is regarded as a solution of high accuracy. The purposes of this exercise have
been to confirm the accuracy of the bench mark solution and to provide a basis for the assessment of
the various methods and computer codes used to obtain the contributed solutions.

KEY WORDS Comparison Natural Convection Numerical Methods Validation

INTRODUCTION

During the conference on Numerical Methods in Thermal Problems, which took place in
Swansea in July 1979, Jones' proposed that buoyancy-driven flow in a square cavity with
vertical sides which are differentially heated would be a suitable vehicle for testing and
validating computer codes used for a wide variety of practical problems. Such problems
include reactor insulation, cooling of radioactive waste containers, ventilation of rooms, fire
prevention, solar energy collection, dispersion of waste heat in estuaries and crystal growth
in liquids.

Following discussions at Swansea, we invited®™ contributions to the solution of the
problem described below. A total of 37 contributions® from 30 contributors or groups of
contributors in nine countries were received, and we are gratified by the world-wide interest
expressed in this project.

This paper summarizes and discusses the main features of the contributions, and provides
a quantitative comparison between them and what we believe to be a high accuracy solution
suitable for use as a bench mark. Full reprints of all the original contributions have been
published separately.>* A preliminary version of this paper was presented at a session of the
2nd Conference on Numerical Methods in Thermal Problems.® Since that preliminary paper
was prepared, several contributors have taken the opportunity to provide improved results
and additional information. These further data are given in full in Reference 5b and have
also been incorporated into the present paper.

* Not counting multiple contributions, distinguished only by mesh size, from the same contributor(s).
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THE COMPARISON PROBLEM?

‘Consider the two-dimensional flow of a Boussinesq fluid of Prandtl number 0-71 in an
upright square cavity described in non-dimensional terms by 0<x=<1, 0ssz=<1 with z
vertically upwards. Assume that both components of the velocity are zero on all the
boundaries, that the boundaries at z =0 and 1 are insulated, 9T/6z =0, and that T=1 at
x=0and T=0 at x=1.

‘Calculate the flow and thermal field for Rayleigh numbers, BgATD?/«v, of 10°, 10%, 10°
and 10°,

“The following results should be supplied:

1

oT
average Nusselt number, J' adz!,‘:o or 1
0

maximum and minimum local Nusselt numbers on the hot wall, and their location;
maximum vertical velocity on the horizontal mid-plane and its location;

maximum horizontal velocity on the vertical mid-plane and its location;

contour plots of the velocity components and, if available, the stream function, the
pressure and the vorticity. These will be used only for a qualitative comparison and will
not be used to infer numerical values of these quantities.

‘In addition, contributions should include no more than two pages™ outlining the method
used and giving relevant computational details (grid, computer, c.p.u. time, storage, etc.). To
facilitate comparisons the non-dimensionalization used for presentation of results should use
the same reference scales as those described in Mallinson and de Vahl Davis.”

=T, T=T,

Notatior,
-T
Non-dimensional temperature T = I
I-T;

Non-dimensional coordinates x,z = x/D,2/D
Non-dimensional velocities  u,w=uD/K,wD/K
Thermal diffusivity K, kinematic viscosity v
Prandtl number Pr = w/K

Rayteigh number Ra=BgAT D¥/ky

Figure 1. Notation

* A constraint few contributors found themselves able to satisfy!
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The notation, as specified in References 3 and 4, is summarized in Figure 1.

After the submissions had been received and given preliminary consideration, we con-
tacted contributors with a request that they supply to us, for each of their solutions, the value
of the stream function at the cavity mid-point and the value and location of the maximum
stream function (where different from the mid-point value). We again sought information on
the c.p.u. time used in obtaining the solutions.

BEST AVAILABLE SOLUTION

One of us (G de VD) used a finite difference (FTCS) method to solve the stream function—
vorticity formulation of the equations on successively finer meshes in an attempt to obtain
the ‘right’ answers. Of course, the exact solutions were not found, and the uncertainties
increase with Rayleigh number. But the solutions obtained are probably the best currently
available, and have been used as a bench mark to assess the contributions received. We are
encouraged by the fact that at least two of the contributions agree well with the solutions we
are presenting, and we feel that they have the same claim to be called the best.

Our opinion of the quality of the bench mark solution does not imply a judgement of the
quality of the particular method employed to achieve it. It reflects the use of mesh
refinement and Richardson extrapolation on a convergent method, together with a somewhat
generous allocation of computer time.

The method, implemented in a program called FRECON,? uses central differences on all
spatial derivatives and forward differences on false transient time derivatives in the equations
for all three variables (¥, { and T). The finite difference approximations were solved by
ADI. The heat flux at the hot (or cold) wall was calculated by a three-point forward (or
backward) approximation to dT/9x. The average value Nu was found using Simpson’s rule.

Full details of the solution and its derivation are presented in a companion paper.® The

Table I. The bench mark solution

Ra

10° 10* 10° 10°
lmad  1:174  5-071 9111 16-32
[#hmax — — 9:612 16-750
X, z — — 0-285, 0-601  0-151, 0-547
Upey 3649 16:178 34-73 64-63
z 0-813  0-823 0-855 0-850
Womx 3697 19-617 6859 219-36
x 0-178  0-119 0-066 0-0379
Nu 1-118  2:243 4519 . 8-800
Nug,, 1-118 2:243 4-519 8-799
Nug 1117 2238 4-509 8-817
Ntup.. 1-505  3-528 7717 17-925
z 0-092  0-143 0-081 0-0378
Nu,, 0692 0-586 0-729 0-989

z 1 1 1 1




230 G. DE VAHL DAVIS AND L P. JONES

bench mark values of the items requested from contributors (but not the contour maps,
which are in Reference 9) appear in Table 1. It is believed that this solution is in error by no
more than 1 per cent at Ra=10° and probably by less than a tenth of that at the lower
Rayleigh numbers. As discussed below, and also in Reference 9, Nu,,,,, at Ra = 10° may be in
error by a slightly greater amount.

Attention is drawn to the fact that the values given in Table I for ., Winaxs Ntmax, NUmin
and ¢, are not necessarily the extreme mesh point values. They were computed by
numerical differentiation, using a fourth-order polynomial approximation.

THE CONTRIBUTIONS

Of the 37 contributions received, 21 used second-order finite difference methods (FDM) of
which one incorporated a fourth-order deferred correction step; ten used finite element
methods (FEM); there were three variations of Hermitian methods in one contribution, one
adaptive finite difference method, one Galerkin method, and one use of spline approxima-
tions.

Table II summarizes the essential features of the methods used in the various contribu-
tions.* The names and addresses of the contributors are given in the Appendix.

All but one of the FEM, and ten of the FDM, solved equations for the primitive variables
(PV). Nine FDM and one FEM solved equations for stream function and vorticity (¢ —{), as
did the Hermitian and spline methods. Two contributions considered the velocity-vorticity
equations (u — ¢) and one is based on the biharmonic ¢ equation; each of these used FDM.

A variety of mesh sizes and element distributions, both uniform and non-uniform, was
used. Several contributors submitted results for two or more mesh (or element) sizes, enabling
an indication of the residual truncation errors to be obtained, but none attempted extrapola-
tion to zero mesh/element size. One used an adaptive method based on approximations of
different order to estimate the errors. In some contributions, advantage has been taken of
symmetry to reduce storage and solution time. The equivalent full mesh has, however, been
given in Table II.

As mentioned, contributors were invited to report the amount of c.p.u. time taken to
obtain their solutions. It is clear from the response to this request that it is not an easy matter
to compare c.p.u. times. Most contributors emphasized that their methods were not optimal
and that the times could have been substantially reduced if they had tuned their codes or
adjusted their solution parameters. Some supplied the total c.p.u. time to solve for a
particular Rayleigh number from a cold start; others used a previous solution at a lower
Rayleigh number or on a coarser mesh as an initial estimate, presumably reducing the total
c.p.u. time consumed and perhaps also easing difficulties due to instability. Some con-
tributors specified the c.p.u. time per iteration, without giving the total number of iterations
required. Others gave the total time for all runs.

Schonauer (private communication) has pointed out that an adaptive method automatically
supplies an error estimate. The time for such a method should therefore be compared to the
total c.p.u. time spent to obtain results in which the contributor has reasonable confidence,
i.e. including runs on coarser grids or with different locations of grid points, etc. Certainly
none of the contributors supplied this information.

* The contribution from Cooper and Pepper was, through no fault of either them or us, received after our original
closing date and was not included in Reference 6. In order that the numbering system of Reference 6 can be
retained, the information about their contribution has been listed at the end of Table II instead of being inserted
among the other FDMs.



NATURAL CONVECTION IN A SQUARE CAVITY 231

Other considerations which affect a comparison between c.p.u. times are the compiler
used, the size of core available, the amount of I/O, and the computer used (speeds can even
vary between computers with the same name and number, depending upon some characteris-
tics of the operating system).

It has not been possible to summarize concisely the information on c.p.u. times which has
been supplied to us, nor to draw from it any meaningful conclusions. It is therefore not
presented here. Instead, the information may be found in the original contributions and the
supplements to some of them.>**®

Tables III to VI contain the quantitative results requested.* The results have been
tabulated to the precision given in the original contributions. In cases where results for two
or more mesh or element sizes have been submitted, only those for the finest are reported
here.

Because the horizontal boundaries of the cavity are adiabatic it should not, in principle,
matter where the overall Nusselt number Nu is calculated. In practice, it does seem to
matter,” and as contributors presented results at various locations, a comparison between
them is affected. The original specification of the problem in References 3 and 4 did not fix
where Nu was to be calculated; the choice was left to the contributors. Because of queries
received, and an editorial constraint imposed upon us by the Journal of Fluid Mechanics, the
specification there® (which is the one presented here) required that Nu should be calculated
on one of the vertical walls (it should not matter which). It is clear, however, that the
one-sided formula required for calculating a temperature gradient at a wall is less accurate
than the central formula of the same formal order of accuracy which may be used at the
mid-plane or on any internal vertical plane. It could be argued that the average of the values
calculated at all such vertical planes would be more accurate than that at any one plane; and
it is suggested in Reference 9 that the mid-plane value Nuy, is better still. For this reason, if
some of these various estimates for Nu have been given, that quoted here is either the mean
Nusselt number Nu or, if available, the mid-plane value Nu,,.

As has been noted, the bench mark extreme values of Nu and of velocity were obtained by
interpolation. Those given by contributors, on the other hand, were not all computed by
interpolation; nor is it always clear from the contributions when interpolation was used. It
was found, in generating the bench mark solution, that the interpolated values differed by up
to 1 per cent from the closest of the adjacent mesh point values; and in one case—that of
Wiax at Ra=10° where the profile is very sharp near the maximum—a discrepancy of 6 per
cent was encountered. This injects an uncertainty into the comparisons and emphasizes the
potential deficiency of using an extreme mesh point value as a function extreme value.

COMPARISON OF THE CONTRIBUTIONS

It could be regarded as invalid or unfair to compare the different contributions with the
bench mark solution for an assessment of their accuracy, since they were computed using a
variety of meshes. If a method is convergent, a more accurate solution can always be
obtained by mesh refinement. Clearly, it could be argued, a 21 X 21 solution from contributor
X cannot be expected to be as good as a 41 X 41 solution from contributor Y, particularly if
the methods used are more or less the same.

And to a certain extent, that would be true. Accuracy should, perhaps, be compared on

* Not all contributors submitted all the information required.
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the basis of equal c.p.u. cost, or storage—or even programming effort. However, the first two
were not generally reported, and the last is almost impossible to measure.

Having said that, it should be added that we acknowledge that not all contributors have
access to unlimited computing time. It is quite noticeable from the results and from the
comments of the contributors that government laboratories generally seem to have the
better computing facilities; and that many contributors took much time and trouble to
participate in what was a peripheral activity for them. Indeed, several were under quite
severe pressure to complete other activities (such as doctoral theses) and were unable to
devote as much effort to this project as they might have wished. ;

Quon'® has gone to some trouble to suggest that a comparison of solutions on the basis of
grid point maxima is inadequate and misleading, and that it is necessary to obtain the
‘correct functional form’ of all field variables. We certainly agree that it would be best to be
able to compare all features of the contributions; but this is clearly not possible. We sought
to compare those aspects of a solution which authors tend to publish (because they have
some practical significance). Maxima are important, and are published. If contributors used
interpolation to obtain their maxima, so much the better. If not, we could only compare grid
point maxima.

Contributors were invited to submit solutions to a specified problem. No restrictions were
placed on method, mesh or effort. It was left to contributors to determine these for
themselves in ways which would yield the solution. It was left to contributors, for example, to
decide how to obtain Nu,,,,: whether or not to use interpolation; if so, which scheme; etc.

It was, of course, clear that a comparison between contributions was to be made. We are
thus entitled to consider that contributors have reached their own compromises between
accuracy and effort (or cost), and have sent us what they regard as ‘the answer to the
problem’.

In comparing the contributions, therefore, little consideration has been given to the fact
that almost any of the methods would have yielded better solutions if only a finer mesh or a
modified method had been used. We have compared what we have been given.

It should be mentioned in this context that the fourth-order deferred correction method of
de Vahl Davis and Leong (number 3 in Table IT etc.) benefited from inside knowledge: mesh
refinement was not used to achieve convergence in isolation, but also to attempt to
reproduce the known bench mark solution. It is therefore not entirely surprising that it has
performed well. Moreover, the contributions of Jones, Thompson and Woodhouse II
(number 9), Linthorst and Schinkel (13), Phuoc and Tanner (27) and Kessler and QOertel (32)
were substantially improved in their later submissions.”®

The results of Rheinlidnder differ very considerably from the rest of the results presented
in Tables III-VI. The reason for this is that he used a k—e turbulence model, his principal
interest being the simulation of time-dependent turbulent flow. He thus, in essence, solved a
different problem. Since his results could be of value to others interested in his problem, they
have been retained in the tables but have not been used in the comparison with the bench
mark solution. It should be noted that his turbulence model was not disabled even at low Ra.

Tables VII-X contain the percentage relative differences between certain characteristics of
the contributions and the corresponding characteristics of the bench mark solutions at the
different Rayleigh numbers. The positions of the various quantities have been omitted from
this comparison, both in order to reduce the volume of data and because they are often
difficult to determine accurately, particularly if the maximum is flat. Note that the use of
relative error magnifies the errors in Nu,,, in comparison with the errors in Nu and Nu,,,..
Note also that the bench mark value of Nu,, has been used for comparison with the
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Table VII. Percentage errors at Ra = 10°

First
No author Nu Numax Numin Umax Winax lymax
1 Bertela 0-2 1-0 -9 0-0 0-4 1-4
2 Cuvelier -0-5 -1-0 —0-3 ~1-3 0-6
3 de Vahl Davis —~0-2 —-0-7 07 0-0 0-0 0-0
4 Giinther 1 07 0-4 -1-2 -0-1 -0-5
5 Gilinther 11 0-0 02 -0-2 0-0 ~0-1
6 Ginther IIT 0-2 0-8 -0-8 -0-1 -0-2
7 Hackbusch 0-0 0-1 0-0 00 —0-2 0-9
8 Jones I -0-1 0-1 0-0 0-0 0-0 0-4
9 Jones 1I
10 Kessler I 02 1.7 -0-3 1-4 01
11 Kiiblbeck 0-1 ~1-0 5-5 -1-6 -1-3 -0-8
12 Lequere ~0-5 -1-0 1-2 -2-7 -1-5
13 Linthorst 0-2 0-8 -0-4 -0-5 -0-5 ~2:6
14 Portier 2-2 1-3 -1-0 03 -0-2
15 Projahn 20 2-3 -2-0 1-4 2-0
16 Quon 0-9 -0-8 52 -1-6 —-0-2 -1-5
18 Ruel 0-2 03 -0-3 -9:6 0-1
19 Schonauer 0-0 0-1 0-0 0-0 0-0 -0-1
20 Thiele 0-1 0-4 —-0-4 0-0 —-0-2
21 Wong 0-2 -0-3 -0-1 —-0-5 —-0-5 -0-3
22 Betts 02 -3 -0-3 -0-2 0-1 0-0
23 Donea —-0-3 -0-1 -0-6 22 1-6 0-5
24 Gartling 0-0 0-1 -0-1 -2 0-0 0-0
25 Heinrich -0-8 -1-2 0-8 ~4-9 —64
26 Laval 1-8 2-0 —~0-2 ~7-4 -5 0-5
27 Phuoc 11 -0-3 -~17 0-6 0-1 -12-3
28 Stevens —0-2 -0-5 0-3 0-6 -0-3
29 Upson 1 0-0 0-1 -0-1
30 Upson 11 0-0 0-1 -0-1 0-2 0-2 0-1
31 Winters 0-2 0-3 -0-1 -0-2 —0:2 0-1
32 Kessler 11 0-0 0-1 ~-0-1 0-0 0-0 0-1
33 Lauriat 0-0 07 -0-7 0-4 0-4
34 Roux I 0-0 0-3 -0-3 -0-1 -0-2 -0-1
35 Roux I —-0-2 ~0-6 0-7 -0-6 -1-2 —-0-3
36 Roux III 0-6 2-7 —-1-3 —-0-7 ~1-3 ~0-4
37 Cooper 0-2 1-0 —-1-7 2-8 -1-8 —-0-3

contributed average Nusselt numbers, since it is believed to be the most accurate estimate of
the average.

The first general conclusion to be drawn is that although there are accurate contributions
using both FEM and FDM, the former are by and large rather better. There is a lower
tendency among the FEM entries towards a degradation of performance with increasing
Rayleigh number and a much lower number of contributions .containing obvious major
errors. The FEM was aiso better able to cope with the higher Rayleigh number, only one
(27) failing to supply answers for Ra=10° (the stated reason being cost).

It is tempting to attribute this superior performance to the more prevalent use of a
non-uniform distribution of grid points in the FEM. However, those FDM which have used a
non-uniform mesh (9, 12-16, 18 and 19) have not, on the whole, performed better than
those which used only a uniform mesh. This conclusion was very surprising to us, since there
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Table VIIL. Percentage errors at Ra= 10"

First
No author Nu Nug,ax Nupin Usnax Wmax  @max
1 Bertela 2-5 5-4 -1-0 ~0-2 —-0-2 1-0
2 Cuvelier 1-1 0-1 -7-8 -3-3 -0-7
3 de Vahl Davis 0-0 ~0-6 0-5 0-1 0-1 0-2
4 Glinther T 02 -0-1 -1-9 ~0-2 -0-3
5 Giinther I 0-3 0-8 -0-7 -0-4 -5
6 Giinther II1 0-6 0-9 0-9 -0-5 —-0-5
7 Hackbusch 0-4 11 -0-4 6-1 -0-4 11
8 Jones 1 0-0 0-6 0-0 0-3 01 0-8
9 Jones 11
10 Kessler 1 1-2 4-0 7-5 —-0-5 -0-6
11 Kiblbeck 22 3-5 10-9 0-4 -1-5 1-4
12 Lequere ~0-5 0-6 4-1 -39 2.3
13 Linthorst 06 1-2 0-5 ~(0-9 -0-6 24
14 Portier 56 37 -1-4 0-1 ~-0-4
15 Projahn 1-2 32 0-7 0-1 —-0-3
16 Quon 1-0 ~2-6 16-0 -0-5 -0-3 -04
18 Ruel 0-8 25-0 22:9 -11 2-0
19 Schénauer 0-2 04 -0-3 0-1 -4 00
20 Thiele 0-8 1-9 -1-9 0-7 -1-0
21 Wong —0-1 0-1 0-5 -0-5 -0-6 -0-2
22 Betts 21 20 07 -0-5 1-5 0-0
23 Donea 1-1 0-3 ~0-6 3-2 2-1 2-5
24 Gartling 0-3 0-3 0-2 0-0 01 01
25 Heinrich -2-1 ~3-0 -0-4 -2-0 1-6
26 Laval 10-3 6-2 9-8 -5-8 1-8 0-7
27 Phuoc ~-1-0 -0-5 -21-5 0-3 -0-5 2-0
28 Stevens ~0-1 0-1 0-1 0-4 0-4
29 Upson I 0-2 0-2 ~0-1
30 Upson II 0-1 02 -0-2 0-1 0-3 0-0
31 Winters 0-3 0-3 —-0-2 0-1 0-4 0-1
32 Kessler 11 0-1 0-0 0-0 0-1 0-1 01
33 Lauriat 0-2 1-5 ~1-4 0-5 1-5
34 Roux I 0-3 0-5 ~0-6 -0-1 0-0 0-0
35 Roux II 0-1 0-5 0-5 -2-0 -1-9 =07
36 Roux II1
37 Cooper 0-8 29 -3-9 -1-1 ~26 0-4

is a popular theory (to which we subscribe) that a denser distribution of mesh points in
suitably chosen locations will lead to improved accuracy—provided, of course, that the
consequent coarse distribution elsewhere does not introduce a countervailing contamination
of the solution.

Most of the non-uniform grid results, however, have been obtained using fewer grid
points than were used with the finest uniform grids. This presumably gives roughly the same
number of grid points within the boundary layers for the higher Rayleigh number cases. This
matter has also been discussed in detail by Quon'® in a comparison of his own results with
some of our contributions. It is clear from the present study and from Quon’s paper that
there is scope for more work on the use of co-ordinate stretching and selective mesh
refinement at high Rayleigh numbers for both finite difference and finite element methods.

Some of the FEM tended to do well on velocities, but not so well on heat transfer rates,
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Table IX. Percentage errors at Ra= 10’

First
No. author Nu Nu, .« Nuin Unax W max ¥ Yrenax
1 Berteld 84 16-9 -53 -0-2 -2:9 32 3-0
2 Cuvelier 62 12-6 —46-5 -3-5 —4-1
3 de Vahl Davis 0-0 -1-5 1-4 0-2 01 0-1 01
4 Ginther 1 12 0-0 -6-8 13-6 22
5 Giinther 11 1-0 29 -2-4 -0-1 -1:2
6 Giinther IIT 0-4 1-7 19 1-0 -1-0
7 Hackbusch 1-8 62 -2-1 1-3 -0-9 32 4-0
8 Jones 1 0-1 1-3 0-7 1-8 0-1 1-9 20
9 Jones 11
10~ Kessler I
11 Kublbeck 2-6 85 27-6 5-8 -1-0 64 5-1
12 Lequere -1-1 1-3 12-5 4-7 -0-2
13 Linthorst 0-4 —-0-1 84 03 0-4 4-5 ~4-8
14 Portier 77 87 -3-3 1-2 —-0-7
15 Projahn 3-1 4-8 0-1 0-2 0-3
16 Quon 0-4 -1-9 10-8 0-2 -0-5 -0-1 ~0-7
18 Ruel 2:0 5-6 1-5 0-8 0-6
19 Schonauer 0-2 0-7 0-5 0-3 0-3 0-4 0-3
20 Thiele ~0-4 14-6 -12-4 18-7 -3-8
21 Wong -0-4 -0-1 4-5 -0-4 -1-6 0-4
22 Betts 2:2 2-8 0-1 0-0 -0-4 -0-3 0-1
23 Donea —~4-6 -3-1 0-1 ~0-2 32 1-6 0-4
24 Gartling 1-6 2-0 1-1 0-0 0-1 —0-1
25 Heinrich -1.9 -3.7 0-6 1-8 27
26 Laval 3.7 6-0 9-5 -0-4 0-6 0-4 -0-2
27 Phuoc -9-7 -5-7 -35-5 2-1 52 -3-1 -1-2
28 Stevens ~0-5 1-9 -1-5 2-1 -0-1 0-3
29 Upson 1 0-9 1-2 -0-1 -0-3 0-4 0-1
30 Upson 11 0-0 0-2 ~0-2 ~0-3 0-4 0-1
31 Winters 0-2 0-3 -0-3 02 0-0 0-1 0-3
32 Kessler 11 0-0 0-3 0-8 -0-1 -0-3 0-0 0-1
33 Lauriat 1-3 52 -1-5 1-9 2-1
34 Roux I 0-2 0-3 1-0 -0-1 -1-2 0-0
35 Roux 11 30 69 ~0-2 -2-6 -3-8 -0-9
36 Roux IIT
37 Cooper 0-7 -0'3 -7-1 0-8 ~14-7 4-0

particularly at the higher Rayleigh numbers, e.g. Betts and Lidder (22), Gartling (24), Donea
and Giuliani (23) and Laval (26). The consistent flux method of Upson et al. (30) gave more
accurate mean Nusselt numbers than their more conventional Gauss point method (29). This
was also true for their values of Nu,,,, except at Ra=10°. As already noted, we are less
confident of the accuracy of the bench mark value of Nu,,,, at 10° than we are of the other
characteristics of the bench mark solution. And we note that two contributions—those of
Upson et al. (30) and Kessler and Oertel (32)—which otherwise agree well with the bench
mark, have values which agree with each other (within 0-3 per cent), suggesting a value for
Nu,..x of about 17-3, some 3-5 per cent below the bench mark value. However, two other
solutions—those of Quon (16) and Winters (31)—which are almost as good, support a larger
value (say 17-7, or 1-3 per cent below the bench mark value). Stevens (28) and Winters (31)
also consistently obtained accurate mean Nusselt numbers with their methods.
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Table X. Percentage errors at Ra= 10°

First
No aUthor Nu Numax Numin Umax Winax wc l,/max
1 Bertela 20-0 14-7 10-7 -0-6 10-3 7-8 72
2 Cuvelier
3 de Vahl Davis 02 4-0 77 0-5 0-9 0-6 0-5
4 Giinther I 30 85 -89 0-0 -0-8
5 Ginther IT 3-8 9-2 —~8-7 -3-1 ~2-1
6 Ginther III -0-5 2-8 27 1-7 -0-3
7 Hackbusch
8 Jones I -0-2 -5-8 22 69 0-1 6-4 6-3
9 Jones 11 0-9 1-4 1-9 -0-7 0-6 3.2 30
10 Kessler 1
11 Kiiblbeck 7-6 25-9 55-7 12-2 0-3 10:2 97
12 Lequere 0-6 1-9 0-1 57 ~2-9
13 Linthorst -3-2 —-5:2 69-3 3.0 1-5 1.7 —-2-4
14 Portier 12-8 15-8 -15-9 1-3 -1-0
15 Projahn 4.3 8-0 -5-0 -1-0 0-2
16 Quon 0-8 —-0-9 22 1-6 0-2 -0-4 -0-5
18 Ruel 58 132 11 2-1 2-1
19 Schénauer 0-5 -0-6 6-0 1-5 -1-3 2:2 41
20 Thiele —-1-2 123-0 —-53-5 3001 —4-8
21 Wong -1-2 -3-2 183 -3-1 —-6-5 2-3
22 Betts 69 -6-4 -14-1 -10-8 -2-9 0-4 1-2
23 Donea —6-4 ~16-9 ~2-6 1-7 3.2 0-4 -1-3
24 Gartling 6-6 39 1-8 -0-4 -0-4 0-6
25 Heinrich —-52 ~15-6 7-0 0-00 17
26 Laval 10-2 9-6 51-9 50 -0-5 3-1 2-3
27 Phuoc
28 Stevens -~0-4 ~1:5 32 0-7 12 0-6
29 Upson 1 42 33 ~0-5 —-0-1 0-6 ~0-3
30 Upson 1T 02 —-3-5 ~0-9 -0-1 0-6 -0-3
31 Winters 0-4 -1-8 —-1-4 -1-1 1-2 07 0-3
32 Kessler 11 0-5 -3-2 -0-3 0-9 0-5 0-1 0-2
33 Lauriat 4-3 17-5 4-9 7-8 7-2
34 Roux I
35 Roux I
36 Roux III
37 Cooper 09 -1-3 —-63-6 0-6 -3-8 2-1

There is too much scatter in the finite difference results to enable any general conclusions
to be drawn. For example, Portier et al. (14) and de Vahl Davis and Leong (3) gave results
which have larger errors for Nu than for the velocities whereas the results for Jones et al. (8,
9) and Le Quere and Humphrey (12) generally had more accurate values for Nu.

Several contributions are, at least for some values of Ra, in general agreement with the
bench mark but contain one or two features which are significantly in error. These include
Giinther’s (4) value of u,,,, at Ra=10"; Ruel, Grand and Latrobe’s (18) value of u,,,, at 10>,
and their Nu,,., and Nu,,;, at 10%; Phuoc and Tanner’s (27) value of ;4 at 10°; and Quon’s
(16) value of Nu,,,—a difficult quantity to obtain accurately—at each Ra except, curiously,
at 10%, where his value is quite good.

Many contributions suffer from declining quality with increasing Rayleigh number, often
despite the accompanying and counteracting use of mesh refinement. Particularly notable in
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this respect are the contributions of Bertela (1), Kiiblbeck and Straub (11), Thiele (20) and
Lauriat (33), although several others display this defect to a lesser extent. Thiele had this
difficulty despite going to a 65X 65 mesh; he was also unable to obtain a steady solution at
Ra=10°.

The non-Boussinesq ideal gas formulation of Le Quere and Humphrey (12) gave answers
which were generally in good agreement with those for a Boussinesq fluid, particularly for
the overall Nusselt number. They used 293 K and 273 K as the hot and cold boundary
temperatures respectively; this temperature difference is below but close to the limit of
validity'! of the Boussinesq approximation used in the bench mark and all other solutions.

Roux, Bontoux, Gilly and Grondin used three methods (34-36). The first, fully fourth-
order, is the most accurate but was only employed at Ra=<s 10°; it would be interesting to see
if its accuracy is maintained at Ra = 10°. With a return to a second-order method for £ and
then also (at Ra=10* only) for T, the quality of their results deteriorated.

The results of Hackbusch (7) are consistently fair, apart from u,,,, at 10* and Nu,,,, at 10°,
which are high. His method-—using the biharmonic equation for $—has the attraction of
avoiding the need for a vorticity boundary condition. However, it was unable to yield a
solution at Ra = 10°, It was also the only method that was noticeably very fast, e.g. 3.8s on a
CDC Cyber 70/76 for a 33x33 grid at Ra=10°, including plotting time. Solution times
could have been reduced even further with the multi-grid method by requiring only two
digits of accuracy.

The method of Laval (26) achieved an accuracy which was more or less independent of
Rayleigh number. The accuracy is not high—it is of the order of several per cent—but it is
reasonable in the light of the coarse mesh used. Projahn and Rieger (15) also obtained
results of fairly uniform (and somewhat better) quality. Giinther’s third method (6) did even
better, although there appears to be a slight deterioration of quality with increasing Ra. The
fourth-order deferred correction method of de Vahl Davis and Leong (3) did well, with the
benefit of knowledge of the bench mark solution as a goal.

Quon (16), as mentioned above, had difficulty with Nu,,;,, but was otherwise within one or
two per cent of the accurate solution, as were Jones et al. (8, 9), Stevens (28), Winters (31)
and Cooper and Pepper (37). Quon'® has also published additional results using a 60X 60
non-uniform grid for Ra = 10°. They are better than his values which are presented here and
their accuracy is high. Gartling’s velocities (24) were accurate but his Nusselt numbers were
not good at 10°.

Schonauer and Raith (19), and Wong and Raithby (21) each estimated the accuracy of
their submissions to be about 1 per cent at Ra= 10°; Schonauer and Raith also predicted a 4
per cent error at 10°. If these two solutions are compared with the bench mark, the error
estimates will be seen to be quite reliable.

The best contributed results were achieved by the FEM of Upson, Gresho and Lee
(29, 30) and the Galerkin method of Kessler and Oertel (32). In most cases their results
agree with ours to better than 1 per cent. The average and extreme values of wall heat flux at
the higher Rayleigh numbers were the characteristics which agreed least well. It is perhaps
significant that Upson et al. took considerable care to provide a high density of grid points in
the wall and corner regions of the cavity.

CONCLUSIONS

We have presented here a summary of the results of a comparison exercise which is intended
to provide a basis for the assessment of numerical methods for the solution of problems of
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buoyancy-driven flow. It is extremely gratifying that so many of the numerical results are
substantially in agreement with each other, and that those which one would expect to give
more accurate results (e.g. higher order methods and those with more grid points) do so.
This, in itself, has enabled the principal aim of our exercise to be met: the generation of a
high accuracy solution which has been validated by several independent calculations. We feel
that this agreement between solutions allows us to assert with some confidence that the
bench mark solution, and of course those which agree with it closely, represent an accurate
solution of the problem. It is to be hoped that those wishing in the future to verify their
algorithms and programs will compute results for the same standard set of parameters to
enable an objective assessment to be obtained. It is also to be hoped that our contributors,
and others interested in problems of this type, will now set out to improve their existing
algorithms and throw light on many of the interesting features that have emerged from this
study. Certainly very few of us have any cause to be complacent.

It is invidious to seek best methods or winners from an exercise such as this; and it was not
our aim to do so. It is, however, pleasurable to report that the three most accurate results for
all the parameter values were provided by a finite element method, a Galerkin method and a
finite difference method, viz. the contributions of Upson, Gresho and Lee (29, 30) and of
Kessler and Oertel (32) together with the bench mark itself.” Many others were in close
pursuit but, because of the scatter in the errors, it is not possible to separate them into
different categories.

Finally, we would again like to express our sincere thanks to the contributors and to many
others for their active encouragement, interest and patience throughout the course of this
exercise.
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Following are the names and addresses of all contributors, in alphabetical order of first

contributor but numbered in accordance with Table II;
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2 C. Cuvelier, Department of Mathematics, University of Delft, Delft, The Nether-
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University of New South Wales, Kensington, 2033, Australia.
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European Communities, Joint Research Centre, Ispra Establishment, Italy.
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4-6 C. Gunther, Kernforschungszentrum Karlsruhe, Institut fir Reaktorbauelemente,
Postfach 3640, 7500 Karlsruhe 1, West Germany.

7 W. Hackbusch, Ruhr-Universitit Bochum, Mathematisches Institut, Postfach
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25 J. C. Heinrich, Department of Aerospace and Mechanical Engineering, University

of Arizona, Tuscon, AZ, 85721, US.A.
M. Strada, Facolta di Fisica Tecnica, Via Marzolo 9, 35100 Padova, Italy.
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NOTE ADDED IN PROOF:

Since the submission of this paper, two additional computations have come to our attention.

(1) P. Le Quere and T. Alziary de Roquefort (C.R. Acad. Sc. Paris, 294, Series II,
941-944, 1982) solved the PV equations using Chebychev polynomials with a semi-implicit
spectral method. With 17 X 17 nodes, their results were good: errors of less than 0-3 per cent
in the variables of Tables VII-X at Ra= 10°, although up to several per cent at 10°; with
33 %33 nodes they were excellent: less than 0-2 per cent for Ra<<10° and (except for Nu,,.,,),
less than 1 per cent at 10° Their value of Nu,,, was 17-553 (with 33 %33 nodes),
somewhere between the bench mark value and the values computed by Upson et al. (30) and
Kessler et al. (32).

(2) N. C. Markatos and K. A. Pericleous (Report PDR/CHAM UK/16, Cham Ltd,
London, 1982) also solved the PV equations using an upwind finite domain code im-
plemented in a commercially available program called PHOENICS. The grids used were
30x30 at 10%; 40 x40 at 10* and 10°; and 80X 80 at 10°; all non-uniform. The results are
only fair with errors in velocities of 5 per cent at Ra= 10°, up to 12 per cent in u,,, at 10°
(but only 0-2 per cent in w,,, at 10°). Errors in Nuy,, and Nu,,,, range from 1 to 7 per cent;
they appear to have been obtained by graphical, rather than numerical, differentiation.
Errors in Nu,,,, not surprisingly under those circumstances, are up to 23 per cent.





